Thus, tumor-infiltrating

Thus, tumor-infiltrating LY2109761 ic50 myeloid cells appear to be primed directly or indirectly by gut commensal bacterial LPS through the TLR4 receptor for responsiveness to the TLR9 ligand CpG-ODN. The overall composition of the fecal microbiota was also found to segregate mice that showed either high or low TNF responses to CpG-OGN. In particular, the abundance of several Gram-positive and Gram-negative bacterial species in the fecal microbiota was found to positively correlate with the response of tumor myeloid cells to CpG-ODN, whereas the abundance of certain commensal Lactobacillus species showed a negative

correlation [22]. The enhancement of the CpG-ODN response by the Gram-negative Alistipes shaii, and its attenuation by L. fermentum were directly demonstrated by in vivo association experiments [22]. In the same study, the effectiveness of the treatment see more of mouse sterile subcutaneous transplanted tumor with the platinum compounds oxaliplatin and cisplatin

was also observed to be dramatically reduced in antibiotic-treated or GF mice compared with conventional mice [22]. Platinum compounds are cytotoxic by virtue of forming platinum-DNA adducts that primarily accumulate intrastrand cross-links, and these in turn inhibit proliferation and induce apoptosis, in part by recruitment of the ataxia telangiectasia and rad3-related kinase to the DNA lesion and p53 activation [168]. In

addition to their direct cytotoxic effect, oxaliplatin but not cisplatin has been shown to induce immunogenic cell death, which releases endogenous activators of inflammation, this website such as high-mobility group protein B1 and ATP, thus driving activation of antigen-presenting cells and antitumor T-cell immunity [169, 170]. In antibiotic-treated mice, although the formation of platinum adducts to tumor cell DNA was not impaired, a significant decrease in DNA damage and cytotoxicity compared with conventional mice was already observed at day 2 after treatment, suggesting that antibiotics administration had suppressed the early genotoxic effect of the drug rather than the inflammatory/immune activation induced by immunogenic cell death [22]. Clear evidence suggests that H2O2 is important for the DNA damage and apoptosis induction effected by platinum compounds [171]. Antibiotics treatment was shown to inhibit the oxaliplatin-induced enhanced expression of genes related to inflammation, and in particular to monocyte differentiation, activation, and function, whereas it prevented the oxaliplatin-induced downregulation of genes related to normal cellular function, such as metabolism, transcription, translation, and DNA replication [22].

3B) The data reveal that the individual CGD cells up-regulate th

3B). The data reveal that the individual CGD cells up-regulate the transcription of the iNOS gene (NOS2) beyond WT cells in both neutrophil and macrophages upon challenge. The response of bone marrow-derived dendritic cells (BMDCs) from unchallenged WT and CGD mice to GlyAg alone was also tested. At 24 h, mRNA and cell extracts were isolated and analyzed by qPCR and Western blot respectively. We found that

iNOS transcription was increased by nearly ten-fold over WT in response to GlyAg (Fig. 3C) and this difference was readily apparent at the protein level learn more (Fig. 3D). These data demonstrate that GlyAg-stimulated CGD cells up-regulate the iNOS gene to a significantly greater extent than WT cells in neutrophils, macrophages, and BMDCs, and this difference accounts for the increased NO produced in the peritoneal cavity upon challenge (Fig. 2A). Given that GlyAg-induced abscess formation is dependent on NO-dependent processing, presentation on MHCII, and subsequent CD4+ T-cell activation 20, we examined

the CGD effect on the amount of GlyAg processing. CGD and WT APCs were incubated for 48 h with radiolabeled GlyAg, then intracellular GlyAg was analyzed for changes in molecular mass as a measure of processing. Greater amounts of the MHCII-presentable low molecular weight form of GlyAg were found in CGD cells compared with WT (Fig. 4A, arrow), demonstrating that increases in NO correlates with greater processed GlyAg available for click here MHCII presentation. Next, to determine if the increased

NO production and antigen processing seen in CGD mice would lead to aberrant T-cell activation, syngeneic APCs and CD4+ T cells were cultured and stimulated with GlyAg and analyzed for IFN-γ by ELISA. We found that the CGD T cells responded earlier and more robustly than WT T cells, with strong IFN-γ production by day 3 in CGD assays (Fig. 4B). The relationship between NO production and T-cell response was further demonstrated by comparing Oxymatrine the T-cell responses from WT, CGD, and iNOS−/− animals at day 3. IFN-γ production was modest for WT, heightened for CGD, and reduced for iNOS−/− cells (Fig. 4C), showing a direct correlation between NO concentration and T-cell response amplitude. To differentiate between greater individual cell responses and a greater number of cells responding, we challenged WT and CGD animals with GlyAg and compared the number of CD4+ T cells expressing CD69, an early activation marker (Fig. 4D). At 24 h, the number of CD4+CD69+ cells without GlyAg challenge was indistinguishable between WT and CGD animals (12.3 and 11.4% respectively), while in vivo stimulation with GlyAg yielded ∼4% increases in CD69+ T cells in both backgrounds (Fig. 4D). Since responding CD4+ T cells have been previously localized to the abscess wall following GlyAg challenge 24, we also performed immunohistochemistry on abscess cryosections.

Critically, however, the outcomes of patients with DKD are modifi

Critically, however, the outcomes of patients with DKD are modifiable and, through appropriate glycaemic and blood pressure control and renin–angiotensin blockade, it may be possible to minimize adverse health outcomes in this population. Stabilization in the incidence of DM-ESKD post-2005 suggests that secondary prevention is already having an impact: the challenge as the underlying prevalence of diabetes in the Australian population continues to grow will be to maximize

all opportunities for prevention along the diabetes spectrum. Internationally, wide variation exists in the observed rates of complications of diabetes, including DKD, which can only be partially explained by biological factors.[26, 27] For example, across high-income countries there is as much as an eight-fold difference in the incidence of selleckchem treated DM-ESKD that cannot be fully X-396 purchase accounted for by variation in diabetes prevalence (Fig. 4). Other factors that are likely to affect the incidence of DM-ESKD include local eligibility

criteria affecting uptake of KRT, characteristics of the diabetes population (average diabetes duration, age at onset, comorbidity burden), and variation in mortality rates.[28] Comparing the predominantly Caucasian populations of Canada, Australia and selected European countries, the ESRD Incidence Study Group found 5-fold differences in the incidence of ESRD due to diabetes of any type, with the highest rates in Canada and Austria and the lowest rates in Norway and the Basque region of Spain.[29]

Whereas variation in population prevalence of childhood onset diabetes largely accounts for differences in the incidence of ESKD due to T1DM, variation in the incidence of ESKD attributable to T2DM is not explained by differences in underlying prevalence of disease in these racially and economically similar countries, but was instead attributed to factors affecting the rate of progression of DKD. Much of the international variation in diabetes complication 6-phosphogluconolactonase rates is believed to relate to regional variation in diabetes management, evidence that the health burden of diabetes can be mitigated through best practices with respect to disease prevention.[30] In addition to wide international variation in the incidence of treated DM-ESKD, Figure 4 also shows significant variation in temporal trends. Whereas the incidence of DM-ESKD has increased steadily in Japan and the Republic of Korea over the past decade, incidence rates have levelled-off in the United States, Canada, the Netherlands, Australia, Norway, Sweden and Denmark, and declined in Austria and Finland. These trends are even more pronounced when calculated relative to the size of the diabetes population, particularly where the underlying diabetes population is growing rapidly.


“Regulatory T (Treg) cells represent one of the main mecha


“Regulatory T (Treg) cells represent one of the main mechanisms of regulating self-reactive immune cells. Treg cells are thought to play a role in down-regulating immune responses to self or allogeneic antigens in the periphery. Although the function of Treg cells has been demonstrated in many experimental settings, the precise mechanisms and antigen specificity often remain unclear. In a hepatitis B e antigen–T-cell receptor (HBeAg-TCR)

double transgenic mouse model, we observed a phenotypically unique (TCR+ CD4−/CD8− CD25+/− GITRhigh PD-1high FoxP3−) HBeAg-specific population that demonstrates immune regulatory function. This HBeAg-specific double-negative regulatory cell population proliferates vigorously in vitro, in contrast to any other known regulatory population, selleck compound in an interleukin-2-independent manner. The primary function of the immune system

is to protect the self from pathogens. A highly effective and dynamic cellular network has evolved to signal the presence of pathogens and initiate a response that is specific for the invading pathogen while maintaining tolerance to self. Distinguishing between self and non-self is a fundamental property of the immune system and is accomplished by a variety of mechanisms. A function of regulatory T (Treg) cells HDAC inhibitor is to prevent self-reactive immune cells from damaging self. The Treg cells, particularly CD4+ CD25+ conventional Treg (cTreg) cells, are thought to play a role in down-regulating immune responses to self or allogeneic antigens in the periphery.1–4 Although the function of Treg cells has been shown in a number of in vivo models of autoimmunity and transplantation, the precise mechanism and antigen specificity often remains unclear.5 In 1971 it was first suggested that Treg cells had the ability to transfer antigen-specific tolerance to naive animals.6 Even though a role for regulatory cells during an immune response was widely accepted, the existence of Treg cells was controversial until a specific Tacrolimus (FK506) surface marker was described by Sakaguchi et al.7 Conventional Treg cells constitutively express a variety of cell

markers, such as CD4, CD25, CD45RBlow, CD62 ligand (CD62L), CD103, as well as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR).7–14 Although cTreg cells express CD4+ CD25+, CD25 is not a specific marker for cTreg cells. Other cell markers (i.e. CTLA-4, GITR and CD103) are also not exclusive markers for Treg cells, because in most cases they are up-regulated on effector T cells upon activation. The transcription factor Forkhead box P3 (FoxP3) is predominantly expressed on Treg cells and appears to be expressed at the thymic CD4+/CD8+ stage.15–18 In contrast to the cell surface markers mentioned above, FoxP3 is not observed in non-Treg cells upon activation or differentiation into T helper type 1/ type 2 cells, nor in natural killer T cells.

Incident hypertension was defined as an absence of hypertension a

Incident hypertension was defined as an absence of hypertension at baseline but presence of hypertension at the follow-up visit. Results:  One hundred ninety-three subjects (34.3%) had developed hypertension at 5-year follow-up. After adjusting for age, gender, baseline blood pressure

and other risk factors, narrower retinal arterioles at baseline was significantly associated with an increased risk of incident hypertension (odds ratio per standard deviation decrease in arteriolar diameter: 1.53, 95% confidence interval: 1.08–2.18). Conclusions:  Our findings support the concept that arteriolar narrowing, evident in the retina, signals an increased risk of developing hypertension in Japanese persons. “
“This study examined the mechanisms by which H2S modulates coronary find more microvascular resistance and myocardial perfusion at rest and in response to cardiac ischemia. Experiments were conducted in isolated coronary arteries and in open-chest anesthetized dogs. We found that the H2S substrate l-cysteine (1–10 mM) did not alter coronary tone of isolated arteries in vitro or coronary blood flow in vivo. In contrast, intracoronary (ic) H2S (0.1–3 mM) increased coronary Selleckchem Caspase inhibitor flow from 0.49 ± 0.08 to 2.65 ± 0.13 mL/min/g (p < 0.001). This increase in flow was unaffected by inhibition of Kv channels with 4-aminopyridine

(p = 0.127) but was attenuated (0.23 ± 0.02–1.13 ± 0.13 mL/min/g) by the KATP channel antagonist glibenclamide (p < 0.001). Inhibition of NO synthesis (l-NAME) did not attenuate coronary

responses to H2S. Immunohistochemistry revealed expression of CSE, an endogenous H2S enzyme, in myocardium. Inhibition of CSE with β-cyano-l-alanine (10 μM) had no effect on baseline coronary flow or Phospholipase D1 responses to a 15-second coronary occlusion (p = 0.82). These findings demonstrate that exogenous H2S induces potent, endothelial-independent dilation of the coronary microcirculation predominantly through the activation of KATP channels, however, our data do not support a functional role for endogenous H2S in the regulation of coronary microvascular resistance. “
“Please cite this paper as: Jin X-L, Li X-H, Zhang L-M, Zhao J. The interaction of leukocytes and adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. Microcirculation 19: 539–546, 2012. Objective:  To explore the correlation between hemorheological variations and the expression of cell adhesion molecules in mesenteric microvessel endothelial cells after internal capsule hemorrhage. Methods:  We established an internal capsule hemorrhage model. Then leukocyte–endothelium interaction was observed and hemorheological variations in mesenteric microvessels were evaluated in the following aspects: blood flow volume, diameter of microvessels, blood flow rate, and shear rate.

The immune system is one of the most important systems protecting

The immune system is one of the most important systems protecting the mother against the environment and preventing damage to the fetus. It is during pregnancy when the maternal immune system is characterized by a reinforced network of recognition, communication,

trafficking and repair; it is able to raise the alarm, if necessary, to maintain the well-being of the mother and the fetus. On the other side is the fetus that, without any doubt, provides a developing active immune system that will modify the way the mother responds to the environment, providing the uniqueness of the immune system during pregnancy. Therefore, it is appropriate to refer to pregnancy as a unique immune condition that is modulated, but not suppressed. This unique behavior explains why pregnant women respond differently to Alectinib price the presence of microorganisms or its products. Therefore, pregnancy should

not imply more susceptibility to infectious diseases, instead there is a modulation of the immune system which leads to differential responses depending not only on the microorganisms, but on the stages of the pregnancy. Over 50 years ago, Sir Peter Medawar proposed the paradigm of why the fetus, as a semi-allograft, is not Birinapant rejected by the maternal immune system17,18 and the presence of the maternal immune system at the implantation site was used as evidence to support this.19 As a result, investigators pursued the mechanisms by which the fetus might escape maternal immune surveillance and varied hypotheses have been proposed.20 Medawar’s observation was based

on the assumption that the placenta is an allograft expressing paternal proteins and, therefore, under normal immunological conditions, should be rejected. However, as our knowledge of placental biology Bay 11-7085 has significantly increased over the last 50 years, we can appreciate that the placenta is more than a transplanted organ. Based on the data discussed here and elsewhere, we suggest that, while there may be an active mechanism preventing a maternal immune response against paternal antigens, the trophoblast and the maternal immune system have evolved and established a cooperative status, helping each other for the success of the pregnancy.21,22 This cooperative work involves many tasks, some of which we are just starting to unveil. We propose a new paradigm in terms of the immunological response of the mother to microorganisms which will be determined and influenced by the presence and responses from the fetal/placental unit. In other words, the immunology of pregnancy is the result of the combination of signals and responses originated from the maternal immune system and the fetal–placental immune system. The signals originated in the placenta will modulate the way the maternal immune system will behave in the presence of potential dangerous signals (Fig. 1a,b).

On this basis, we hypothesized that RSA patients might present de

On this basis, we hypothesized that RSA patients might present deficiencies in the VIP/VPAC system among other factors required for a suitable check details homeostasis control at the interface. Certainly, the reduction of VPAC1 and VIP expression in maternal PBMCs after trophoblast interaction observed only in RSA patients might underlie failures in VIP-activated pathways. In this sense, RSA patients displayed a significantly lower frequency of CD4+VIP+ endometrial cells in comparison with fertile women, suggesting

a negative precondition of endometrium before embryo implantation. To our knowledge, this is the first report showing that deficiencies in VIP production could be associated with recurrent pregnancy loss. In line with this, in NOD mice, which show pregnancy complications and an increased rate of embryo resorption at the prediabetic stage, the local expression of VIP mRNA was diminished at viable implantation sites compared with control mice [20]. Given the action of VIP in the development of Treg and the efficacy of these cells

to control inflammatory processes, this peptide could arise as a promising candidate as a diagnostic or surrogate biomarker in current treatment of early pregnancy losses as recurrent spontaneous abortions. Research in the past few years has provided a clearer understanding of the molecular mechanisms leading to immune tolerance and homeostasis, but the definitive cellular and molecular interactions underlying the embryo–uterine cross-talk remain to be resolved. Although further selleck screening library Aldehyde dehydrogenase studies are required to assess the clinical, diagnostic and therapeutic applications of VIP in the human maternal–fetal interface, these observations might contribute to the design of novel therapeutic

strategies to prevent fetal rejection. This study was supported by grants to R.R. (CONICET PIP 2659, UBACyT 2010–2012) and C.P.L. (UBACyT 2011–2014 and PICT 2011-0144 from ANPCyT). We thank Dr Gil Mor, who kindly gave us the Swan 71 cell line. We also thank Dr E. Lombardi and PROEGRE (Research Program from the Argentinean Society of Gynecological and Endocrinological Reproduction) for continuous support. The authors have no financial conflict of interest. “
“Citation Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ. Seminal Plasma Proteins: What Role Do They Play? Am J Reprod Immunol 2011; 66 (Suppl. 1): 11–22 Problem  Semen is a heterogenous and complex cell suspension in a protein-rich fluid with different functions, some of them well known, others still obscure. Method of study  This paper reviews, comparatively, our current knowledge on the growing field of proteomics of the SP and its relevance in relation to the in vivo situation, for the sake of reproductive biology, diagnostics and treatment.

Consanguinity was reported in 8·8%, and 18·5% of patients were re

Consanguinity was reported in 8·8%, and 18·5% of patients were reported to be familial cases; 27·9% of patients were diagnosed after the age of 16. We did not observe a significant decrease in the diagnostic delay STA-9090 for most diseases between 1987 and 2010. The most frequently reported long-term medication is immunoglobulin replacement. Nizar Mahlaoui, Nathalie Devergnes, Pauline Brosselin (Paris), Özden Sanal (Ankara), Olcay Yegin (Antalya), Necil Kütükcüler (Bornova-Izmir), Sara Sebnem Kilic (Görükle-Bursa),

Isil B. Barlan (Istanbul), Ismail Reisli (Konya), Fabiola Caracseghi (Barcelona), Juan Luis Santos (Granada), Pilar Llobet (Granollers), Javier Carbone, Luis Ignacio Gonzalez Granado, Silvia Sanchez-Ramon (Madrid), Lourdes Tricas (Oviedo), Nuria Matamoros (Palma Selleckchem BAY 80-6946 de Mallorca), Andrew Exley, Dinakantha Kumararatne (Cambridge), Zoe Allwood, Bodo Grimbacher, Hilary Longhurst, Viviane Knerr (London), Catherine Bangs, Barbara Boardman (Manchester), Patricia Tierney (Newcastle upon Tyne), Helen Chapel (Oxford), Luigi D. Notarangelo, Alessandro Plebani (Brescia), Claudio Pignata (Naples), Renate Nickel (Berlin), Uwe Schauer (Bochum), Brigitta Späth (Bonn), Petra Kaiser (Bremen),

Joachim Roesler (Dresden), Kirsten Bienemann (Düsseldorf), Richard Linde, Ralf Schubert (Frankfurt am Main), Sabine El-Helou, Henrike Ritterbusch, Sigune Goldacker (Freiburg), Marzena Schaefer, Ulrich Baumann, Torsten Witte (Hannover), Gregor Dückers (Krefeld), Maria Faβhauer, Michael Borte (Leipzig), Gundula Notheis, Bernd H. Belohradsky, Franz Sollinger (München), Carl Friedrich Classen (Rostock), Katrin Apel (Stuttgart), Sandra Steinmann (Ulm), Carmen Müglich (Würzburg), Anna Szaflarska (Krakow), Ewa Bernatowska, Edyta Heropolitanska (Warsaw), TacoW. Kuijpers, Rachel van Beem (Amsterdam), Nermeen Mouftah Galal (Cairo), Shereen Reda (Cairo), Claire-Michele Farber (Bruxelles), Isabelle Meyts

(Leuven), Sirje Velbri (Tallinn), Maria Kanariou (Athens), Evangelia Farmaki, Efimia Papadopoulou-Alataki, Maria Trachana (Thessaloniki), Darko Richter (Zagreb), Audra Blaziene (Vilnius), Markus isothipendyl Seidel (Wien), Laura Marques (Porto), Conleth Feighery (Dublin), Maria Cucuruz (Timisoara), Julia Konoplyannikova, Olga Paschenko, Anna Shcherbina (Moscow), Anna Berglöf (Huddinge), Helene Jardefors, Per Wagström (Jönköping), Nicholas Brodszki (Lund), Nathan Cantoni (Basel), Andrea Duppenthaler (Bern), Gaby Fahrni (Luzern), Miriam Hoernes, Ulrike Sahrbacher (Zürich), Srdjan Pasic (Belgrade), Peter Ciznar (Bratislava), Anja Koren Jeverica (Ljubljana), Jiri Litzman, Eva Hlavackova (Brno), Ihor Savchak (Lviv), Henriette Farkas (Budapest) and Laszlo Marodi (Debrecen). Primary immunodeficiencies (PID) represent rare inborn errors of the immune system predisposing to recurrent infections, autoimmunity, allergy, cancer and other manifestations of immune dysregulation.

Multiple AREs are found in the 3′ UTR of IFN-γ mRNA and they are

Multiple AREs are found in the 3′ UTR of IFN-γ mRNA and they are associated with post-transcriptional regulation. Replacing these AREs with non-A+U-rich elements result in significantly higher levels of IFN-γ expression,

suggesting the presence of AREs are associated with IFN-γ mRNA degradation [36]. Stimulation of p38 MAPK and its downstream target MAPK-activated protein kinase 2 (MK2) BVD-523 reverses IFN-γ ARE associated mRNA degradation and leads to increased protein expression [37]. Although the precise mechanisms of 3′ UTR ARE-associated post-transcriptional regulation are unclear, multiple studies suggest they provide an effective mechanism for tightly regulating the expression of various cytokines by inducing mRNA stabilization or degradation where appropriate [38]. We hypothesize that LLT1 signalling regulates some form of IFN-γ post-transcriptional regulation such as those described here, and future research should focus on identifying the specific mechanisms associated with this regulation. The ABT-888 purchase known ligand of LLT1, CD161 is expressed on subsets of CD8+ T cells, CD4+ T cells and NK cells [39]. We suggest that upon the arrival of NK cells at the site of infection, LLT1 is ligated by CD161 expressed on immune cells already present, thereby

signalling LLT1 to initiate IFN-γ production. LLT1 stimulated IFN-γ production likely serves as an additional mechanism by which the immune system PFKL can respond to infection under the appropriate conditions. Our research has demonstrated a likely mechanism for LLT1 intracellular signalling stimulating IFN-γ production. This research was partially supported by grants from the National Institutes of Health, Texas Higher Education Coordinating

Board and Project SCORE from the National Science Foundation. We thank Dr. Xiangle Sun for technical assistance with flow cytometry and Dr. Richard Easom for technical advice with detecting phosphorylated proteins. “
“The immune mechanisms underlying delayed induction of Th1-type immunity in the lungs following pulmonary mycobacterial infection remain poorly understood. We have herein investigated the underlying immune mechanisms for such delayed responses and whether a selected innate immune-modulating strategy can accelerate Th1-type responses. We have found that, in the early stage of pulmonary infection with attenuated Mycobacterium tuberculosis (M.tb H37Ra), the levels of infection in the lung continue to increase logarithmically until days 14 and 21 postinfection in C57BL/6 mice. The activation of innate immune responses, particularly DCs, in the lung is delayed.

Preferential picking of SNPs was conducted under the pairwise tag

Preferential picking of SNPs was conducted under the pairwise tagging option, with a minimum allele frequency of 25% and a high Illumina design score. The algorithm was set to select tags that would cover the Caucasian HapMap panel with an r2 of 0·8 or greater [11]. Furthermore, for both genes one additional custom SNP was selected on the basis of previously published association studies or presumed functionality. The following

Ibrutinib in vivo SNPs were genotyped in the IL1B gene; rs1143627 (tag), rs1143634 (tag), rs1143643 (tag) and rs1799916 (custom); IL1RN: rs11677397 (custom), rs2637988 (tag), rs408392 (tag), rs397211 (tag). DNA was extracted from whole blood samples and SNP typing was conducted using a custom Illumina goldengate bead SNP assay in accordance with the manufacturer’s recommendations (Illumina Inc., San Diego, CA, USA). Serum and BALF levels of IL-1β and IL-1Ra were determined using a multiplex suspension bead array system according to the manufacturer’s protocol (Bio-Rad Laboratories, Hercules, CA, USA). Data analysis was performed buy R428 using the Bioplex 100 system and Bioplex Manager software version 4·1 (Bio-Rad Laboratories). The lower limit of detection was 0·3 pg/ml for IL-1β and 2·2 pg/ml for IL-1Ra. Because the variation in BALF retrieval in healthy controls was not significantly

different from retrieval in IPF patients, we did not correct for that. Genotype frequencies were tested for Hardy–Weinberg equilibrium (http://ihg2.helmholtz-muenchen.de/ihg/snps.html). Genotype and allele frequencies in the IPF group were compared with the control population using the χ2 test. Haplotypes and linkage disequilibrium (LD) were calculated (Haploview 4·1; Broad Institute of MIT and Harvard, Cambridge, MA, USA). Serum and BALF data were expressed as median and IQR. Differences in serum or BALF

concentrations between patients and controls were analysed using a Mann–Whitney U-test. For analysis of correlation, log-transformation was used to Cell press reach near-normal distribution. The correlation between cytokines in BALF and clinical data was assessed using Pearson’s correlation coefficients. The differences between cytokine levels in different genotypes were assessed with the Kruskal–Wallis test. Statistical analysis was performed using spss version 15·0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism 5·0 (GraphPad Software, Inc., San Diego, CA, USA). Statistical significance was considered at a value of P < 0·05. Serum levels of IL-1β in IPF patients were increased significantly compared to healthy controls, while serum levels of IL-1Ra were decreased (Table 1). Furthermore, BALF levels of both IL-1β and IL-1Ra were increased significantly in IPF patients compared to healthy controls.