However, both T and B lymphocytes were found to have increased an

However, both T and B lymphocytes were found to have increased and proliferated in the carbon PS 341 dot-treated groups compared with the saline control group on the ninth day post exposure (P < 0.05; Figure 3). Furthermore, the proliferative capacity of lymphocytes was dependent on the dose of carbon dots. The 50-mg/kg

administration of carbon dots had a more significant effect on the T lymphocyte proliferation than the 2-mg/kg administration (P < 0.05). The B lymphocyte proliferation in mice treated with 50 mg/kg of carbon dots increased significantly compared with the other two groups treated with carbon dots (P < 0.05; Figure 3). Figure 3 Influence of carbon dots on splenocyte proliferation of BALB/c mice. BALB/c mice were injected in the caudal vein with different doses of carbon dots. Spleen samples were separated to prepare splenocytes at 1 or 9 days after the administration. T lymphocytes were introduced by ConA,

Dibutyryl-cAMP datasheet and B lymphocytes were introduced by LPS. Data are presented as means ± standard deviations, n = 5. *P < 0.01 compared with saline group; #P < 0.01 compared with lower dose carbon dot-treated group. Significant difference was calculated by one-way ANOVA using SPSS19.0. The proportions of lymphocyte subsets The percentage of CD3+ and CD19+ represented the relative quantities of T and B lymphocytes, and the percentage of CD4+ and CD8+ explained the proportion of helper LY2874455 datasheet T (Th) cells and cytotoxic T (Tc) cells, respectively. Compared with the saline group, only the 50-mg/kg group had a significant percentage of CD19+ (P < 0.05; Table 2); all of the three carbon dot-treated groups were found to have a decrease in the ratio of CD4+/CD8+ versus the control group on the first day after administration (P < 0.01;

Table 3). At 9 days post exposure, to a significant increase of the percentage of CD3+ was noticed in the three carbon dot-treated groups versus the control (P < 0.01), and the increase of CD19+ percentage was observed in the 2- and 10-mg/kg groups versus the control (P < 0.01; Table 4). Furthermore, the ratio of CD3+/CD19+ had an evident increase in all the three carbon dot-treated groups versus the control (P < 0.01 for 2 and 50 mg/kg; P < 0.05 for 10 mg/kg; Table 4). The percentage of CD19+ in the 10-mg/kg administration groups was higher than that in the other two carbon dot-treated groups (P < 0.01; Table 4). Compared with the saline group, the proportion of both CD4+ and CD8+ T lymphocyte subsets was increased in drug-treated groups versus the control (P < 0.01; Table 5). However, administration of carbon dots decreased the ratio of CD4+/CD8+, especially for the 2-mg/kg group versus the control (P < 0.05; Table 5), whereas there was no difference in the percentage of CD4+ and CD8+ between the administration groups (P > 0.05; Table 5).

Comments are closed.