Methods: A convenience sample of 130 adults wore a GENEA accelerometer on their left wrist while performing 14 different lifestyle activities. During each activity, oxygen consumption was continuously measured using the Oxycon mobile. Statistical analysis used Spearman’s rank correlations to determine the relationship between measured and estimated intensity classifications. Cross tabulations were constructed to show the under-or overestimation of misclassified CP456773 intensities. One-way chi(2) tests were
used to determine whether the intensity classification accuracy for each activity differed from 80%. Results: For all activities, the GENEA accelerometer-based physical activity monitor explained 41.1% of the variance in energy expenditure. LOXO-101 in vivo The intensity classification accuracy was 69.8% for sedentary
activities, 44.9% for light activities, 46.2% for moderate activities, and 77.7% for vigorous activities. The GENEA correctly classified intensity for 52.9% of observations when all activities were examined; this increased to 61.5% with stationary cycling removed. Conclusions: A wrist-worn triaxial accelerometer has modest-intensity classification accuracy across a broad range of activities when using the cut points of Esliger et al. Although the sensitivity and the specificity are less than those reported by Esliger et al., they are generally in the same range as those reported for waist-worn, uniaxial accelerometer cut points.”
“Electron transfer (ET) reactions are important for their implications in both oxidative and reductive DNA damages. The current contribution selleckchem investigates the efficacy of caffeine, a xanthine alkaloid in preventing UVA radiation induced ET from a carcinogen, benzo[a]pyrene (BP) to DNA by forming stable caffeine-BP complexes. While steady-state emission and absorption results emphasize the role of caffeine in hosting BP in aqueous medium, the molecular modeling studies propose the energetically favorable structure of caffeine-BP complex. The picosecond-resolved emission spectroscopic studies precisely
explore the caffeine-mediated inhibition of ET from BP to DNA under UVA radiation. The potential therapeutic activity of caffeine in preventing DNA damage has been ensured by agarose gel electrophoresis. Furthermore, time-gated fluorescence microscopy has been used to monitor caffeine-mediated exclusion of BP from various cell lines including squamous epithelial cells, WI-38 (fibroblast), MCF-7 (breast cancer) and HeLa (cervical cancer) cells. Our in vitro and ex vivo experimental results provide imperative evidences about the role of caffeine in modified biomolecular recognition of a model carcinogen BP by DNA resulting dissociation of the carcinogen from various cell lines, implicating its potential medicinal applications in the prevention of other toxic organic molecule induced cellular damages. Copyright (C) 2014 John Wiley & Sons, Ltd.