In contrast, the concentration of glutamate increased greatly during SPS. It was significantly high for 30 min after stimulation. The expression level of α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid/N-methyl-d-aspartate receptors in the MD mice was also changed compared with that in the control mice after stimulation. These findings indicate that early-life stress disrupts the homeostasis of glutamatergic synapses. “
“Neural computational accounts of reward-learning have been dominated by the hypothesis that dopamine neurons behave like a reward-prediction error and thus facilitate reinforcement learning in striatal target neurons. While this framework this website is consistent with a lot of behavioral and neural evidence, this theory fails to account for a number
of behavioral and neurobiological Raf inhibitor observations. In this special issue of EJN we feature a combination of theoretical and experimental papers highlighting some of the explanatory challenges faced by simple reinforcement-learning models and describing some of the ways in which the framework is being extended in order to address these challenges. “
“Glioblastoma (GBM) is by far the most common and most malignant primary adult brain tumor (World Health Organization grade IV), containing a fraction of stem-like cells that are highly tumorigenic and multipotent. Recent research has revealed that GBM stem-like cells play important roles in GBM pathogenesis. GBM is thought to arise from genetic anomalies in glial development. Over the past decade, a wide range of studies have shown that several signaling pathways involved in neural development, including basic helix–loop–helix,
Wnt–β-catenin, bone morphogenetic proteins–Smads, epidermal growth factor–epidermal growth 6-phosphogluconolactonase factor receptor, and Notch, play important roles in GBM pathogenesis. In this review, we highlight the significance of these pathways in the context of developing treatments for GBM. Extrapolating knowledge and concepts from neural development will have significant implications for designing better strategies with which to treat GBM. “
“Schizophrenia is a common disorder in which strong genetic predisposition is combined with environmental factors. Despite the widely recognized developmental nature of the disease, symptoms do not emerge until late adolescence. Current therapeutic approaches are therefore employed too late, as brain alterations may have been present earlier than symptom onset. Here I review the developmental trajectory of the cortical circuits responsible for excitation–inhibition balance, which are at the center of current pathophysiological views, and propose that oxidative stress in cortical interneurons may be a final common pathway by which several different etiological factors can yield the cortical dysfunction characteristic of schizophrenia.