For instance, at the more indented Kõiguste and Sõmeri areas, the relationships with waves were strong and positive, but mixed at the exposed and straight coastal section at Orajõe. Also, among the study sites, the Kõiguste area had the highest macrovegetation biomass and coverage, whereas Orajõe had the scarcest vegetation based on beach wrack samples. The influence of water circulation on wrack samples is brought to bear by the coastline configuration,
i.e. it depends on how easily and from which side of the site the material gets trapped. The study demonstrates that beach wrack Nutlin-3a ic50 sampling can be considered as an alternative cost-effective method for describing the species composition in the nearshore area and for assessing the biological diversity of macrovegetation. In fact, we even found more species from beach wrack samples than from the data collected by divers or by using a ‘drop’ video camera. Although hydrodynamic variability is higher in autumn and more biological material is cast ashore, the similarity between the two sampling methods was greater in spring and summer, making these seasons more suitable for such assessment exercises. However, the method, outlined as a case study in the Baltic Selleckchem Alectinib Sea, can be somewhat site-dependent and its applicability in other areas of the Baltic Sea should be tested. “
“The latest reports
on Sea Spray Aerosols (SSA) indicate that the level of knowledge in this field is still insufficient (Vignati et al. 2010, de Leeuw et al. 2011, Tsigaridis et al.
2013). New findings have been reported practically every year: e.g. the influence of the organic fraction on SSA has been suggested in recent years (Modini et al. 2010, Westervelt et al. 2012). The development of computer models of the global climate requires more detailed information about the importance of SSA in these models. One of the parameters Plasmin that describes the generation of SSA in the atmosphere is the Sea Salt Generation Function (SSGF). The dependence of SSA on parameters such as wind speed or particle radius has been studied by many authors (Monahan 1988, Smith et al. 1993, Andreas 1998, Zieliński & Zieliński, 2002, Gong 2003, Zieliński 2004, Petelski & Piskozub 2006, Keene et al. 2007, Kudryavtsev & Makin 2009, Long et al. 2011, Norris et al. 2012). One of the methods for investigating aerosol fluxes involves the Gradient Method (GM) (Petelski 2003, Petelski 2005, Petelski et al. 2005, Petelski & Piskozub 2006). Very little research has been done on the topic of SSGF from the surface of the Baltic Sea (Chomka & Petelski 1996, Chomka & Petelski 1997, Massel 2007) and thus any new insights based on aerosol studies in this region are of great importance to global studies. A new approach to the SSGF was suggested by Andreas et al. (2010).